
 1

 ABSTRACT – This paper applies reinforcement learning techniques.

to the game Minesweeper without aiming to use neural

networks. Four different strategies were used over two different

algorithms. Two of the strategies were able to achieve notable

win rates after training. Furthermore, when more data was used

in training, a strategy using multiple agents was able to compete

with the performance of neural networks.

I. INTRODUCTION

HE game of Minesweeper has been a popular logic game

for decades, providing players with the challenge of

revealing hidden mines on a grid-based board without

detonating any of the mines. Minesweeper requires strategic

decision making and logical deduction. Since the board state

begins with each space being covered, it presents a unique

challenge to try and solve the board using reinforcement

learning.

Minesweeper is played on a rectangular grid, where each cell

either does or doesn’t contain a mine. For clarification,

Minesweeper is a digital game played on a device, and not a

physical game with pieces. In order to win the game, a player

must reveal all empty cells without revealing a mine. When an

empty cell is uncovered, it will have a number indicating how

many mines are adjacent to it. A mine is adjacent to a space if

it resides within the spaces directly to the sides, or the

diagonals, of the space. Below are three figures, which

represent the initial board, what the board may look like after

the first player interaction, and a solved board. The board used

was a 9x9 grid with 10 mines. The flags are also placed by the

player, but only serves as a tool for the player to remember what

spaces he/she thinks to be a mine.

Figure 1: Minesweeper board in different points of gameplay

Reinforcement learning (RL) has gained significant attention

as a powerful approach to machine learning, particularly in the

domain of autonomous decision making. RL algorithms learn

to make sequential decisions by interacting with an

environment and receive feedback in the form of rewards.

Understanding how different reinforcement learning algorithms

perform in such environments improves our understanding of

decision-making agents.

Complex unknown environments pose unique challenges for

RL algorithms. These environments may have high

dimensional states and uncertain reward structures.

Furthermore, the true state of the environment may be obscured

to the agent. Additionally, limited prior knowledge about the

environment further complicates the learning process.

Consequently, assessing the performance of different RL

strategies in these scenarios can be attributed to a test of their

effectiveness and reliability in real-world applications.

Minesweeper constitutes a complex unknown environment

for RL. Additionally, it is proven to be NP-complete, which

indicates it as a complex computing problem for any approach

[1].

II. REINFORCEMENT LEARNING

Reinforcement learning is a machine learning approach that

enables an agent to learn optimal decisions by interacting with

an environment and receiving feedback in the form of rewards.

At its core, RL involves an agent, environment, states, actions,

rewards, and a learning process [2]. The agent is given the state

of the environment, from which the agent chooses an action

based on that state. The environment is then updated according

to the agent’s action, transitioning into a new state, and a reward

is produced and given as feedback to the agent. The agent’s goal

is to learn the optimal actions to take in the environment in order

to maximize the reward it earns.

Comparative Analysis of Reinforcement

Learning Strategies for Minesweeper

Sawyer, Shane

T

 2

Figure 2: Diagram of RL cycle [3].

This paper uses the formalization of RL as a Markov

Decision Process, which is defined as a tuple (S, A, P, R, 𝛾) [2].

• S: The set of possible states of the environment.

• A: The set of possible actions the agent can make.

• P: The state transition probability function, or the

probability of one state transitioning to another.

• R: The reward function.

• 𝛾: The discount factor, a hyperparameter that

determines the importance of future rewards.

Now with this formal definition, it is easier to see and define

how complex Minesweeper can be for reinforcement learning.

Firstly, the set of possible states for Minesweeper can become

very large. This paper evaluates performance on a 9x9 grid with

10 mines. The following is an equation that is an estimation of

the number of possible states:

|𝑆| ≈
81!

71! 10!
⋅ 271 = 4.43522867 × 1033

The first term represents the number of ways we can place 10

mines on the 9x9 board, and the second term represents that

each space, besides the mines, can either be covered or

uncovered. Furthermore, the possible actions that can be taken

by the agent contributes to the complexity. The agent will not

be allowed to place flags, but only attempt to uncover each

unique space. For each of the possible states, the agent needs to

learn which of the 81 locations to uncover for optimality. Thus:

|𝐴| = 81

For the purposes of this paper, the state transition probability

function won’t be prevalent in the used algorithms, which will

be introduced shortly. The reward function varies depending on

the environment and can heavily influence the behavior of the

agent. This is because the agent’s sole purpose in reinforcement

learning is to maximize the rewards earned. For Minesweeper,

this is the reward function used in this paper:

𝑅(𝑠, 𝑤𝑖𝑛) = 1000
𝑅(𝑠, 𝑙𝑜𝑠𝑒) = −100
𝑅(𝑠, 𝑢𝑛𝑐𝑜𝑣𝑒𝑟) = 5
𝑅(𝑠, 𝑟𝑒𝑝𝑒𝑎𝑡) = −1

As seen by the reward function, the agent is rewarded for

winning the game, or uncovering a space. The agent is

penalized for uncovering a mine, or attempting to uncover a

space that has already been uncovered, denoted by “repeat.”

III. CHALLENGES

There are various challenges that will need to be addressed

in applying RL to Minesweeper. The first challenge is

managing exploration versus exploitation. Exploration refers to

how the agent randomly interacts with the environment. Since

the agent aims to maximize the rewards it earns, it typically will

always choose the action it believes is optimal. Consequently,

the agent repeatedly chooses the best action, which is

exploitation. At the beginning of training, an RL agent typically

begins with a high chance to choose random actions. This

random chance will be decreased over time, to allow the agent

to exploit more. In Minesweeper, having any random chance

can be detrimental to the performance of the agent, as it could

randomly choose a mine. To address this, the exploration versus

exploitation strategy will need to be handled carefully to allow

the agent to explore without randomly choosing a mine.

Secondly, the Minesweeper board consists of sparse rewards.

Most cells on the board are empty, and the agent will typically

begin by repeatedly trying to uncover cells that are already

revealed. At the beginning of training, the agent has not yet

learned much about each choice to be made on the board, and

very few actions may be taken which result in the agent earning

a positive reward rather than being penalized. Mines are rather

infrequent, but winning the game is even more infrequent.

Thus, the agent will encounter few rewards contributing to the

challenge of applying RL to Minesweeper.

IV. STRATEGIES

A. Q-learning

Q-learning is a fundamental RL algorithm that uses a value-

based approach. It learns an action-value function to estimate

the expected reward for each state-action pair [4]. Q-learning

typically employs a strategy that varies between exploration

and exploitation, which was discussed in the challenges

section. It is known for its simplicity and ability to converge

to an optimal policy with discrete state and action spaces [5].

More specifically, Q-learning involves learning an action

value function, referred to as the Q-value function. Each Q-

value represents the expected reward of taking a specific

action and subsequently acting optimally. The algorithm

iteratively updates its Q-values using something called the

Bellman equation [6]. Furthermore, Q-learning uses the

exploration and exploitation strategy. Denoted by “epsilon,”

the agent will act randomly with probability “epsilon” which

is exploration, otherwise the agent will choose the optimal Q-

value, or exploration. The Q-values are updated with the

following equation:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ∗ (𝑟 + 𝛾 ∗ max
𝑎′

(𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

In this equation Q(s, a) represents the Q-values for a state s

and action a, r is the reward, alpha is the learning rate, gamma

is the discount factor, and s’ and a’ represent the optimal

 3

future action state pair. This equation will be applied using

three different strategies.

Strategy #1, Normal

Figure 3: Board showing observation for normal Q-learning.

In this strategy, the state, or the observation given to the agent

of the environment, will be the entire 9x9 board. This will

include the same state space, action space, and reward function

as described earlier. Ideally, this would allow the agent to take

the best action possible as it is able to observe the entire board.

However, to be covered in detail later, this strategy paired with

Q-learning fails to solve randomly generated 9x9 boards due to

the extremely high state space.

Strategy #2, Sliding Window

Figure 4: Board showing observation for sliding window.

This new strategy provides the agent with a much smaller

observation of the environment. A 3x3 window starts in the top

left corner of the board, the observation of this 3x3 window is

given to the agent, in which the action is chosen and applied to

the environment. Before moving the window, the agent is given

the next state of the environment and the rewards it received.

This strategy aims to reduce the state space and the action space.

The new sizes of the state space and action space are as follows:

|𝑆| ≈ ∑
9!

𝑛! (9 − 𝑛)!
⋅ 29−𝑛 = 19683

9

𝑛=0

|𝐴| = 10

You may notice that the action space is 10, rather than 9 as

would be expected on a 3x3 grid. In order to allow the agent to

play the game without being forced to decide on each 3x3

section, a new action called “no operation” or “noop” is added.

In the case that the agent cannot make an informed decision on

the small observation, it is allowed to choose to do nothing. A

small penalty is given to ensure the agent will not continuously

choose to not act and instead seek out to uncover spaces. In

order to improve the optimization of rewards, the reward

function of the environment is altered to:

𝑅(𝑠, 𝑤𝑖𝑛) = 5
𝑅(𝑠, 𝑙𝑜𝑠𝑒) = −100
𝑅(𝑠, 𝑢𝑛𝑐𝑜𝑣𝑒𝑟) = 5
𝑅(𝑠, 𝑟𝑒𝑝𝑒𝑎𝑡) = −1
𝑅(𝑠, 𝑛𝑜𝑜𝑝) = −0.1

A large reward for winning is no longer given, because it

would violate the properties of the MDP. For example, the

agent may get an identical observation of a 3x3 area. In case 1,

all other possible 3x3 sections are already cleared, the agent

only has one last decision to make. In case 2, the 3x3 section is

identical but the other possible 3x3 sections may remain

uncleared. If the agent was still rewarded 1000 for winning, it

would cause inconsistent rewards to be given, because the same

action would produce a reward of 1000 in case 1, but a reward

of only 5 in case 2 despite the observations being identical.

Strategy #3, Multi-Agent

Figure 5: Board showing observation for each agent.

The third and final strategy used for Q-learning involves an

identical state and action space to the second strategy. However,

instead of moving a window around for a single agent, this

strategy involves creating 49 individual agents for every unique

3x3 section of the board. This is a strategy known as multi agent

Q-learning [7]. The state and action spaces are identical because

of the 3x3 grid observation, and that each agent still has the

option to not make an action. Additionally, the reward function

remains identical.

During training, one agent is chosen randomly from the 49

agents to make an action. This ensures that each agent has an

equal opportunity to learn and act on the board, rather than

following a fixed order that may result in some agents getting

less opportunities from other agents during training.

 4

B. SARSA

The second algorithm that will be used is known as State-

action-reward-state-action (SARSA). It is very similar to Q-

learning but has the distinct difference that it is on-policy rather

than off-policy [8]. It updates the policy, or the Q-values based

on the actions taken. This is different from Q-learning, which

updated its values on the maximum expected Q-value for future

actions, rather than actions taken. The algorithm is very similar:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ∗ (𝑟 + 𝛾 ∗ (𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎))

The only difference in the algorithm is that the future Q-values

Q(s’, a’) is the actual state and action pair of the environment

based on the changes made by (s, a).

The method of exploring is different, however. Q-learning

randomly chooses when to explore whereas SARSA initializes

the Q-values to a low value, to encourage exploration [2]. For

the purposes of this paper, the state representation, action space,

and reward function will remain identical to that of Strategy #1

used for Q-learning.

However, due to being an on-policy algorithm, SARSA will

not be able to be implemented into the Strategy #2 and Strategy

#3 used in Q-learning. The sliding window strategy will not

work because SARSA learns off the actual best next action,

which is disrupted or inconsistent due to the moving

observation space. Similarly, in the third strategy there is an

overlap between the agents' observation spaces. Another agent

acting within the space of a different agent will not disrupt Q-

learning but will disrupt SARSA from choosing the correct

actual action.

V. ANALYSIS

The first form of analysis will use the same conditions for

each strategy. The environment will be identical for each

strategy, besides the changes to the reward function discussed

for the second and third Q-learning strategies. The board will

be 9x9 with 10 mines randomly placed throughout the board.

Each strategy will be trained in over 10,000 different episodes

with 5 different random boards. One episode is the agent

playing on one board until it wins or loses.

Figure 6: Episodes rewards, length, and training error during

training for normal Q-learning strategy.

The three graphs represent the data of how the agent

performed and interacted with the environment. The first graph

shows the total sum of rewards earned for each episode. Over

the 10,000 episodes it can clearly be seen that the agent was

able to earn higher rewards before reaching a plateau. The

second graph shows the episode lengths, or how many moves

the agent made before it won or lost. Over each episode, the

length tends to increase because the agent begins to learn to

avoid the lines. The blue lines represent the raw data and not

the average, so at the beginning there are certain episodes that

become lengthy. This is because the agent takes time to learn

that trying to uncover spaces that are already uncovered leads

to a loss in rewards. The training error represents the difference

between the expected reward of the action and the actual reward

earned. The high spikes where the error rises to 1000 is around

when the agent begins to win games, and the expected reward

at the state is 0, which was the initial Q-value. Once the agent

begins winning, the average error rises slightly before gradually

decreasing to 0.

Figure 7: Episodes rewards, length, and training error during

training for sliding window Q-learning strategy.

Due to the different observations given to the agent the data

in these graphs differ slightly. Like the first strategy for Q-

learning, the episode rewards clearly rise and plateau, showing

the agent has learned to increase the earned rewards. One

difference is that the episode lengths rise much higher. This

shows how the agent decides to not make an action many times,

each time it doesn’t make an action counts as a step in the

episode. The reason why the longest episodes only reach 1000

steps is because the environment is forcibly ended if the agent

isn’t making progress. If you compare the red line in the episode

length to the previous strategy, it averages at around 200 rather

than below 20. This is because the sliding window strategy

typically forces the agent to not choose to make an action as the

window moves, resulting in much longer episodes.

Figure 8: Episodes rewards, length, and training error during

training for multi-agent Q-learning strategy.

 5

The graphs for this strategy vary greatly from the previous

two. Due to the nature of having 49 individual agents and each

one being chosen randomly; it produces the challenge of

ensuring that the agents can interact with the environment

without randomly choosing a mine. As a result, the exploration

versus exploitation strategy is varied to heavily favor

exploitation over exploration. This can easily be seen in the

graph for the episode lengths, which experiences a much larger

rise in the lengths. By heavily restricting the exploration

strategy the episode lengths become much longer as the agents

don’t randomly detonate mines.

Figure 9: Episodes rewards, length, and training error during

training for SARSA.

 The final algorithm I will be going over in this analysis

section is the results from the SARSA training. By simply

comparing the shape of the graphs, the results seem the most

like the normal Q-learning strategy. As was discussed in the

Strategies section, SARSA is very similar to Q-learning. The

episode rewards noticeably start at a much lower value.

Compared to the normal Q-learning strategy, SARSA takes a

longer time to begin earning any rewards in the environment.

However, once SARSA begins earning rewards it can learn at

a slightly faster rate than Q-learning. Furthermore, looking at

the raw data in blue, the SARSA agent can begin winning

games much earlier than the Q-learning agent.

 The results from this show that the SARSA agent can learn

quickly off less data. While this is not an issue with the

Minesweeper game, it may be more applicable in real world

applications. For example, in a situation where a robot learns

to flip pancakes in the real physical world [9]. Although the

robot can technically flip pancakes for as long as it wants, the

time to physically perform the action may take long. If one

were to have to choose between Q-learning or SARSA for this

situation, it would be more suitable to choose SARSA. This

would allow the robot to learn faster off less data, causing it to

need less flips overall.

VI. LARGER SCALE

The previous analysis only used 5 different game boards over

a rather small number of episodes. However, it shows insights

into how the agents learn and interact with the environment.

In order to properly evaluate their efficacy to win games of

Minesweeper, we trained the agents on a much larger scale,

only using randomly generated boards. For those more familiar

with the intricacies of Minesweeper and board cycles [10], this

large-scale test did not use board cycles. Each board was

completely randomized. The following table represents the win

rate of each strategy after being trained on 1,000,000 random

boards, and then tested further on another 10,000 boards once

training finished.

Agent Type Win Rate

Normal 0.00%

SARSA 0.00%

Sliding Window 1.53%

Multi-Agent 4.18%

Figure 10: Win rate for each agent type over 10,000 games

after training

The normal Q-learning approach, as expected, exhibited a

win rate of 0.00%. Given the vast number of possible

Minesweeper games, it is highly improbable that any of the

training boards coincided with those encountered during the

final 10,000 games. Furthermore, even if the same board did

arise during training, the normal agent likely failed to achieve

victory while playing it.

In contrast, both the sliding window and decentralized

methods demonstrated an ability to win some games after

training. This success can be attributed to the fact that their state

representations only encompassed 3x3 grids. The multi-agent

approach appeared to be more effective in solving Minesweeper

boards. This could be attributed to the fact that each agent

remained static in its designated 3x3 area. Agents positioned in

the corners exhibited less overlap with other agents, thus

enabling them to learn and make more informed decisions. On

the other hand, the sliding window method encountered

limitations in making contextually nuanced decisions based on

its relative position within the Minesweeper board, such as

whether it occupied a corner, edge, or central region.

The findings indicate that the localized nature of the sliding

window and multi-agent methods facilitated improved

performance in Minesweeper. By focusing on smaller, more

manageable regions of the board, these approaches allowed the

agents to develop strategies that were better suited to specific

localized contexts. Consequently, the multi-agent method,

which emphasized independent learning within designated 3x3

areas, exhibited greater adaptability and effectiveness in

achieving successful outcomes.

It is worth noting that the win rates achieved by both the

sliding window and decentralized methods are relatively low.

This can be attributed to the inherent complexity and

uncertainty of the Minesweeper game, even when employing

Q-learning techniques. Nonetheless, the results highlight the

potential of tailored Q-learning approaches in tackling large

state space environments, such as Minesweeper, while offering

valuable insights into the interplay between state representation

and decision-making capabilities.

Other papers that have explored the comparative

performance of machine learning algorithms typically use the

time to train as a metric [11], [12]. However, they do not

provide enough justification as to why this is a valid measure of

 6

performance. While it provides some insight into the time

required to train a model, it is susceptible to various factors that

can render it inaccurate. For example, the performance of a

computer can vary depending on other tasks running

concurrently, system load, available resources, and hardware

specifications.

I present a table of time to train for my methods, but to ensure

the information can be trusted I trained the agents in a sandbox

environment on my own computer. Each agent was given 4

cores on an Intel Core i9-9900K CPU clocked at 3.60 GHz.

Furthermore, each agent was given 16GB of memory. The

training does not nearly use this much memory, but it is to

ensure the agent is not restricted by hardware or other processes

that may be running on my system.

Agent Type Time To Train (hh:mm:ss)

Normal 00:15:43

SARSA 00:31:06

Sliding Window 02:34:21

Multi-Agent 03:45:53

Figure 11: The time it took to train each agent type over

1,000,000 games.

It's worth noting that the time to train could be improved via

software optimization and hardware acceleration. The

presented times should only be compared to each other

relatively, rather than accepted as the time to train on all

systems.

Considering the previous note, the normal approach or the

first strategy took much less time to train. This is because the

agent always has the entire board as the observation and can

always make an action anywhere. Regardless, the normal Q-

learning agent was unable to achieve a single win after training.

On the other hand, the other two strategies took much longer to

train. This is because the episode lengths are much longer as

most actions on the environment are the agent/agents choosing

to not make any action.

Finally, the second notable times to compare are between

SARSA and the normal Q-learning strategy. The main

difference in the algorithms is that the SARSA agent learns

based off the actual best next action. In contrast, the Q-learning

agent assumes it will act optimally in future decisions. Due to

this, the SARSA agent takes a longer time to train over all the

games. In the analysis section, it was seen that the SARSA

agent was able to learn quickly off less data. This shows the

tradeoff between using SARSA or Q-learning. In cases where

you may have less data or have a limited number of times to act

upon an environment, it would be better to use SARSA.

VII. NEURAL NETWORKS

Although I will refrain from going into detail on the

complexities of how neural networks work, it is worth

mentioning that other projects exist where reinforcement

learning was applied to Minesweeper [13], [14]. In these

projects, these GitHub users applied deep learning techniques

using neural networks to the game Minesweeper. In the first

project [13], the user used the same sized board as mine, along

with the same number of mines. Since their code is open source,

I was able to download their code and run it against my own

environment to see the results. After training on 1,000,000

games in the same environment as discussed in the analysis

section and running on a further 10,000 games, I was able to

achieve better results than my own. Their agent was able to win

9.05% of games played after training. However, the time to

train on my own system was longer than 24 hours. Similarly,

applying the code written in the second project [14], I was able

to achieve a win rate of 10.01% over a training time longer than

24 hours.

Although the win rates may be impressive compared to my

own tactics which do not use neural networks, the training time

is much too long to use on my own system. In a similar test, I

attempted to train my Multi-Agent strategy over 10,000,000

games in order to match the longer training time of neural

networks. In the end, my Multi-Agent strategy was able to

achieve a win rate of 8.78%.

Despite taking 10x the amount of data, my Multi-Agent

strategy was able to achieve an increased win rate and compare

to the strategies of neural networks. This shows that although

neural networks can learn patterns and solve games with a

smaller amount of data, the computations required to do so take

a long time. As a result, applying that same amount of training

time but using more data to a simpler agent can result in a

similar win rate.

VIII. CONCLUSION

In conclusion, employing strategies that simplify an agent's

perception of the environment, such as in the context of

Minesweeper, has demonstrated the ability of Q-learning

methods to solve boards effectively without resorting to deep

learning techniques. By reducing the problem to the smallest

possible state representation, such as a 3x3 grid, it becomes

feasible to make informed decisions within the game.

The findings of this research shed light on the potential of Q-

learning to handle large state space environments while

circumventing the complexities associated with deep neural

networks. By leveraging localized observations and limiting the

agent's focus to a smaller region of the board, it becomes

possible to distill the problem into a more manageable and

comprehensible form.

The use of a sliding window or multi-agent approach in Q-

learning enabled agents to develop strategies that were tailored

to specific localized contexts within Minesweeper. This

approach fostered a deeper understanding of the game

dynamics within the limited scope of the agent's perception,

ultimately leading to improved performance.

 7

The ability of Q-learning to tackle Minesweeper, even in its

reduced state representation, highlights the adaptability and

effectiveness of this reinforcement learning technique. By

leveraging temporal difference learning and value iteration

principles, Q-learning demonstrates its capability to navigate

complex environments and make informed decisions based on

limited observations.

Future research that focuses on reinforcement learning

without using deep learning or neural networks can focus on

making logical inferences and simplifications to the

environment to reduce the state space. This could reliably

increase the performance of the agents on the environment, with

the tradeoff being an increase in training time. The projects used

in [13] and [14] rely on the pattern learning of neural networks

but could likely see an increase in win rates if forced to make

logical decisions on subdivisions of the environment.

IX. REFERENCES

[1] R. Kaye, “Minesweeper is NP-complete,” Math. Intell.,

vol. 22, no. 2, p. 9, Spring 2000, doi:

10.1007/BF03025367.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction. Cambridge: The MIT Press, 1998.

Accessed: Jun. 03, 2023. [Online]. Available:

https://muse.jhu.edu/pub/6/oa_monograph/book/60836

[3] R. Amiri, H. Mehrpouyan, L. Fridman, R. Mallik, A.

Nallanathan, and D. Matolak, “A Machine Learning

Approach for Power Allocation in HetNets Considering

QoS,” Mar. 2018.

[4] C. Watkins, “Learning From Delayed Rewards,” Jan.

1989.

[5] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach.

Learn., vol. 8, no. 3, pp. 279–292, May 1992, doi:

10.1007/BF00992698.

[6] T. G. Dietterich, “Hierarchical Reinforcement Learning

with the MAXQ Value Function Decomposition,”

arXiv.org, May 21, 1999.

https://arxiv.org/abs/cs/9905014v1 (accessed Jun. 04,

2023).

[7] S. Sen, M. Sekaran, and J. Hale, “Learning to coordinate

without sharing information,” in Proceedings of the

Twelfth AAAI National Conference on Artificial

Intelligence, in AAAI’94. Seattle, Washington: AAAI

Press, Aug. 1994, pp. 426–431.

[8] G. Rummery and M. Niranjan, “On-Line Q-Learning

Using Connectionist Systems,” Tech. Rep. CUEDF-

INFENGTR 166, Nov. 1994.

[9] P. Kormushev, S. Calinon, and D. Caldwell,

“Reinforcement Learning in Robotics: Applications and

Real-World Challenges,” Robotics, vol. 2, pp. 122–148,

Sep. 2013, doi: 10.3390/robotics2030122.

[10] “Board Cycles - MinesweeperWiki.”

http://www.minesweeper.info/wiki/Board_Cycles

(accessed Jun. 05, 2023).

[11] N. Gholizadeh, N. Kazemi, and P. Musilek, “A

Comparative Study of Reinforcement Learning

Algorithms for Distribution Network Reconfiguration

With Deep Q-Learning-Based Action Sampling,” IEEE

Access, vol. 11, pp. 13714–13723, 2023, doi:

10.1109/ACCESS.2023.3243549.

[12] J. Ngarambe, A. Irakoze, G. Y. Yun, and G. Kim,

“Comparative Performance of Machine Learning

Algorithms in the Prediction of Indoor Daylight

Illuminances,” Sustainability, vol. 12, no. 11, Art. no. 11,

Jan. 2020, doi: 10.3390/su12114471.

[13] S. Lee, “sdlee94/Minesweeper-AI-Reinforcement-

Learning.” May 25, 2023. Accessed: Jun. 13, 2023.

[Online]. Available:

https://github.com/sdlee94/Minesweeper-AI-

Reinforcement-Learning

[14] J. Hansen, “Minesweeper Solver - Using Deep

Reinforcement Learning.” May 25, 2023. Accessed: Jun.

03, 2023. [Online]. Available:

https://github.com/jakejhansen/minesweeper_solver

